Originally Posted by

**chrischen88** Show that $\displaystyle B_1(0;1) \subset B_2(0;1) \subset B_{\infty}(0,1) $ in $\displaystyle \mathbb{R}^n$ for all $\displaystyle n$. I should clarify some notation here $\displaystyle B(0,1)$ means the open ball with center 0, and radius 1.

Definition of norms:

$\displaystyle d_1(x,y) := ||x - y||_1 = \displaystyle\sum_{j=1}^n|x_j - y_j|;$

$\displaystyle d_2(x,y) := ||x - y||_2 = \left(\displaystyle\sum_{j=1}^n|x_j - y_j|^2\right)^{1/2}$;

$\displaystyle d_{\infty}(x,y) := \displaystyle\max_{1\leq j \leq n}|x_j - y_j|$

My attempt:

I know that to show they are subsets of each other, I have to show the implication $\displaystyle \forall b \in B_1(0,1) \Rightarrow b \in B_2(0,1) $ as well and next $\displaystyle \forall b \in B_2(0,1) \Rightarrow b \in B_{\infty}(0,1)$ as well.

So I have, let $\displaystyle b \in B_1(0,1)$, then $\displaystyle |b_1| + |b_2| + \cdots + |b_n| < 1$, I just don't see how this would imply $\displaystyle \left(|b_1|^2 + |b_2|^2 + \cdots + |b_n|^2\right)^{1/2} < 1$ or $\displaystyle |b_1|^2 + |b_2|^2 + \cdots + |b_n|^2 < 1$

And I'm also unsure as to how to show $\displaystyle \forall b \in B_2(0,1) \Rightarrow b \in B_{\infty}(0,1)$.

Hints?