Q: Let $\displaystyle x_{n}\geq\\0$ for all $\displaystyle n\in{N}$.

(a) If $\displaystyle (x_{n})\rightarrow\\0$, show that $\displaystyle (\sqrt{x_{n}})\rightarrow\\0$.

(b) If $\displaystyle (x_{n})\rightarrow\\x$, show that $\displaystyle (\sqrt{x_{n}})\rightarrow\\\sqrt{x}$.

Do I just note that $\displaystyle \sqrt{(x_{n})}$ is less than $\displaystyle (x_{n})$ so it must also be less than epsilon for part (a)?