Complex variable line integral...

My problem is computing the function of real variable $\displaystyle y$...

$\displaystyle \delta (y) = \frac{1}{2\pi i} \int_{c-i \infty}^{c+i \infty} \frac{y^{s}}{s} \cdot ds$ (1)

... where $\displaystyle c >0$ is real, i.e. the integral of the function $\displaystyle \frac{y^{s}}{2\pi i s}$ along the line defined as $\displaystyle Re(s)=c >0$ . In particular is important for me to undestand why the integral (1) doesn't depend from $\displaystyle c$...

Any help will be greatly appreciated!...

Kind regards

$\displaystyle \chi$ $\displaystyle \sigma$