Originally Posted by

**guest** Hi.

What would be the best way to solve next three differential so that the result it is not dependant from $\displaystyle s$.

I know what the $\displaystyle x$, $\displaystyle y$, and $\displaystyle z $ are. I need $\displaystyle v_x$, $\displaystyle v_y$ and $\displaystyle v_z$.

$\displaystyle

\sqrt{v_x^2+v_y^2+v_z^2} \frac{dv_x}{ds}= -a b \cos(\theta) \frac{dx}{ds}

$

$\displaystyle

\sqrt{v_x^2+v_y^2+v_z^2} \frac{dv_y}{ds}= -a b \cos(\theta) \frac{dy}{ds}

$

$\displaystyle

\sqrt{v_x^2+v_y^2+v_z^2} \frac{dv_z}{ds}= -a \frac{dz}{ds} -a b \cos(\theta) \frac{dz}{ds}

$

$\displaystyle a,\;b$ are constants.