2nd Order Inhomogeneous DE

x''-x = sin(t) x'(0)=x(0)=0

I'm supposed to solve this using both Laplace and non-Laplace methods

Using Laplace, I got that x(t) = .5cos(t)-.5sin(t)-.5e^(-t), which works with the given conditions

However, for some reason when I try to find a solution by undetermined coefficients...I can't. I got a completely different answer (I think it was something like x(t)= -.5sin(t), or something like that) which obviously doesn't work.

Solving for the homogeneous, I find that xh(t) = e^(-t) + e^t

Then I guessed that xp(t) = acos(t) + bsin(t), plugged it into the equation, but then found that a = 0 and b= -.5

Can anyone help me figure this one out? It seems silly that I can't do it...

Thanks!