# Thread: Diff. Eq. change of variable

1. ## Diff. Eq. change of variable

$y ' = x + y$

$u = x + y$

We're supposed to solve the eq. using u, but we have not covered change of variables in class, and I'm having troubles with partial derivatives.

$\frac{du}{dx} = dx + y$

$\frac{du}{dy} = x + dy$

Differentiating in terms of x and y leave those, but I don't know what to do with those. We're trying to find $\frac{dy}{dx}$, but I can't seem to find that in terms of u and x.

2. Originally Posted by diablo2121
$y ' = x + y$

$u = x + y$

We're supposed to solve the eq. using u, but we have not covered change of variables in class, and I'm having troubles with partial derivatives.

$\frac{du}{dx} = dx + y$

$\frac{du}{dy} = x + dy$

Differentiating in terms of x and y leave those, but I don't know what to do with those. We're trying to find $\frac{dy}{dx}$, but I can't seem to find that in terms of u and x.
Hi

I suppose u and y are functions of x
$\frac{du}{dx} = 1 + \frac{dy}{dx}$ and $\frac{dy}{dx} = x + y$

So $\frac{du}{dx} = 1 + u$
This is a 1st order differential equation