I am given the DE y'+y^2 = x^2
Could anyone verify that i am solving for the general equation correctly?
dy/dx + y^2 = x^2
d/dx [(e^x)y^2] = (x^2)e^x
(e^x)y^2=(x^2)(e^x)-(e^x)+c
y^2=((x^2)(e^x)-(e^x)+c)/(e^x)
y={[(x^2)(e^x)-(e^x)+c]/(e^x)}^(1/2)
I am given the DE y'+y^2 = x^2
Could anyone verify that i am solving for the general equation correctly?
dy/dx + y^2 = x^2
d/dx [(e^x)y^2] = (x^2)e^x
(e^x)y^2=(x^2)(e^x)-(e^x)+c
y^2=((x^2)(e^x)-(e^x)+c)/(e^x)
y={[(x^2)(e^x)-(e^x)+c]/(e^x)}^(1/2)