Are you given initial conditions and the concentration of nutrients flowing in?
You have the correct initial mass of 20,000 g, but you don't want to call this a concentration, it is simply an amount. Also, you are correct that 9000 grams is flowing in. So, let's then use smaller numbers and say the initial mass is 20 kg and 9 kg is flowing in per day.
Let's let represent the mass of nutrient present in the estuary at time .
Now, we know the time rate of change of is equal to the rate in minus the rate out. We have already determined the rate in. The rate out will be a function of . We will asume the concentration of nutrient is uniform in the estuary. That is, the concentration of nutrient in any part of the estuary at time is just divided by the volume of fluid in the estuary. Since the flow in is equal to the flow out, this volume remains constant at .
Hence, the output rate of nutrient is:
So, we now have enough information to model with the IVP:
where
Can you proceed from here?
would this mean that on day zero, my flow out amount is 9 -20/10 = 7?
we are supposed to write down and solve an appropriate differential equation for N(t) along with the appropriate initial condition. That would somehow be my initial amount plus the flow in rate, minus the flow out rate? My apologies for sounding so thick!
The initial output rate of nutrient would be 7 kg/day, but that is really only applicable at the very start of the first day, the initial moment.
I have already stated the appropriate differential equation/initial condition. This is called an initial value problem (IVP).
Now, to solve the ordinary differential equation (ODE), do you recognize what type of equation it is, and if so, what you need to do to solve it?