Trying to solve by substitution...getting stuck near the end

Hi, I have a differential equation that I'm trying to solve my substitution. I've got most of it, but I can figure out how to end it properly.

The equation: x y' - y = y [1 - ln^{2}(y/x)]

I divide by x

let v = y/x

y' = v + xv'

sub v and y' in the equation to get:

dx/x = dv/[v(1-ln^{2}v)]

let u = ln v

du = dv/v

sub these to get:

dx/x = du/(1-u^{2})

Integrating this I get:

ln |x| = 1/2 * ln | (1+u)/(1-u) |

reverse substituting v:

ln |x| = 1/2 * ln | (1+ ln v) / (1 - ln v ) |

reverse substituting y:

ln |x| = 1/2 * ln | [1+ ln (y/x)] / [1- ln (y/x)] |

How do I proceed after this. Is there any way to get the solution in terms of y?

Or should I use a different approach from the beginning itself?

Any help is appreciated, thanks :)

Re: Trying to solve by substitution...getting stuck near the end

Hello, fractal5!

We have: .

. . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . .

.n. . . . . .

n . . . . . . . . . . . . .

n . . . . . . . . . . . . . .

n . . . . . . . . . . . . . .

This time we were lucky (if you can call it that) . . . we *could* solve for *y.*

But 99% of the solutions can**not** be solved for *y.*

. . And we are not expected to.

Re: Trying to solve by substitution...getting stuck near the end

Thanks Soroban, seems easy once I've seen the solution. I'd just like to point out for anyone using this in the future, after integrating it comes to ln|(1+u)/(1-u)|. I believe you reciprocated it by mistake, but no worries I got my answer. Thanks again.