No. If p and q are two locally stable equilibria, there must exist a locally unstable equilibrium some where "between" them (lying on some curve from one to the other.)
Hi
Suppose for a dynamical system there exists a finite number of isolated equilibria, all of them are locally stable (i.e eigenvalues of the associated Jacobian for each equilibrium have negative real parts).
My question is: Can the number of the of equilibria in the statement above exceed one? (sorry if it is a trivial question)
Regards