Prove that the general solution to the differential equation, $\displaystyle \frac{dy}{dx}=\frac{k}{xhy}$ is $\displaystyle y^2=lnCx^n$ where $\displaystyle k, h, C and n$ are constants.

$\displaystyle \frac{dy}{dx}=\frac{k}{xhy}$

$\displaystyle \int{y}dy=\int\frac{A}{x}dx$ where $\displaystyle A=\frac{k}{h}$

$\displaystyle \frac{1}{2}y^2=Alnx+C$

how can I twit the equation further?