# Thread: Stability of Critical Points of Second Order Equation

1. ## Stability of Critical Points of Second Order Equation

Find the critical points of the following second-order equation (by transferring into a system of first order differential equations) and determine the stability of these critical points:

$x''+x*cos(x'- \frac{\pi}{2})=x^2-1$

My start at a solution: transferring into a system of first order differential equations

let $y_1 = x, y_2=x'$

therefore

$y_1'=x'=y_2$
$y_2'= x''= x^2-1 -x*cos(x'- \frac{\pi}{2})$ $= y_1^2-1 -y_1*cos(y_2- \frac{\pi}{2})$

So to get the critical points I can set $y_1'= y_2' = 0$ This implies $y_2= 0$

so $0= y_1^2-1 -y_1*cos(0- \frac{\pi}{2})$, where $cos(- \frac{\pi}{2})=0$

so $0= y_1^2-1$, implies $y_1=+-1$

Then my critical points are

(1,0) and (-1,0)

At this point I would take the Jacobian at the two critical points and solve for the eigenvalues. The eigenvalues would then tell me about the stability? I will do this, I just want to confirm I am on the right track first.

Thanks so much,

Len

You are.

3. ## Re: Stability of Critical Points of Second Order Equation

Originally Posted by Danny
You are.
Thank you,

So for the point (1,0) I got eigenvalues -2 and 1. This would mean the point is unstable and a saddle.

and for (-1,0) I got eigenvalues 1/2 + (sqrt(7)/2)i and 1/2 - (sqrt(7)/2)i

So it has two positive real parts. therefore it is unstable.

Is there anything else I can say about the stability and the critical points?

4. ## Re: Stability of Critical Points of Second Order Equation

Len, are you in MATH3090 at York University?

,

,

,

,

,

,

,

,

,

,

# critical point ode

Click on a term to search for related topics.