Hello again. How do I solve the diff. equation (dy/dx)^2 + x* (dy/dx) - y = 0?

It's the first time that I face a second degree diff. equation and don't know how to handle it. Any help would be appreciated! Thank you very much!

Printable View

- October 20th 2011, 06:04 PMDarkprinceSecond degree differential equation
Hello again. How do I solve the diff. equation (dy/dx)^2 + x* (dy/dx) - y = 0?

It's the first time that I face a second degree diff. equation and don't know how to handle it. Any help would be appreciated! Thank you very much! - October 20th 2011, 06:16 PMchisigmaRe: Second degree differential equation
Usually as second degree differential equation one means a differential equation in which the second derivative of the unknown function appears... in the differential equation You wrote it does appear the square on the first derivative of the unknown function...

Kind regards

- October 20th 2011, 06:30 PMDarkprinceRe: Second degree differential equation
But degree is the order of the highest derivative! When the second derivative appears it is a second order diff. equation not a second degree.

- October 20th 2011, 07:54 PMchisigmaRe: Second degree differential equation
All right!... in that case we write the ODE in the more 'conventional' form...

(1)

The approach of (1) is a little 'unusual' ... if we derive both terms respect to x we have...

(2)

... so that we have two possible solutions of (1)...

a) if...

(3)

... the solution is ...

(4)

b) if...

(5)

... then setting and using (1) and the result found in a) we have...

(6)

... which is equivalent to...

(7)

The solution found in b) is usually called 'singular solution'...

Kind regards

- October 21st 2011, 01:29 AMDarkprinceRe: Second degree differential equation
Thank you very much! I also have in addition to determine the initial values y(x0) = y0 for which there are no solutions, a unique solution, two or more solutions. How do I do that? Thanks again!

- October 21st 2011, 03:58 AMAckbeetRe: Second degree differential equation
- October 21st 2011, 04:25 AMDarkprinceRe: Second degree differential equation
Chi Sigma gave me the correct solution, my equation was the first derivative to the square. But let the general solution be y=c*x + c^2 where c is an arbitrary constant, how do we find initial values y(x0) = yo for which there are no solutions , a unique solution or two (or more) solutions? How can we determine for a differential equation how many solutions does it have and in my case for the above diff equation? Thanks again very much!

- October 22nd 2011, 01:08 PMDarkprinceRe: Second degree differential equation
Still cant find initial solutions for the diff equation to have a unique, none, or two (or more) solutions. our general solution is y=c*x+c^2 and any c would give a unique solution. at the same time our singular solution had a factor of x^2 so there is no initial condition for the general solution to equal the singular solution! any help will be greatly appreciated!

- October 23rd 2011, 02:14 AMchisigmaRe: Second degree differential equation
I have been away for two days and apologize for that!... If You have an 'initial condition' , then first You verify that it is compatible with the 'singular solution' , i.e. if . If that is true, the the 'singular solution' is one of the solution of the DE. After that You find the values of the constant c that satisfy the second degree equation , that can have two, one o no real solutions...

Kind regards

- October 23rd 2011, 06:17 AMDarkprinceRe: Second degree differential equation
Solving the equation c^2 + c*x0 - y0 yields that the equation has zero solution when (x0)^2+4*y0<0, one solution if (x0)^2+4*y0=0 and two solutions if (x0)^2+4*y0>0.

Can I say anything else about that? Thanks again for your time!

Basically if discriminant is zero we get the real solution, else for <0 we get y0<-x0^2/4 and for >0 we get y0>-x0^2/4. - October 23rd 2011, 01:19 PMchisigmaRe: Second degree differential equation
- October 23rd 2011, 05:29 PMDarkprinceRe: Second degree differential equation
Thanks again for your time!