Find a solution to the given differential equation: y'+(cosx)y=2xy where y(0)=-2

Let p(x)=cosx

Let g(x)=2xy

Let mu(x)=e^(integral of cosx)=e^sinx

e^sinx(y')+e^sinx(cosx)y=e^sinx(2xy)

Integral of (e^sin(x)y)' dx= Integral of e^(sinx)2xy dx

But then I realized I couldn't further simplify the integral on the right hand side. So how do I find C?