Dear Colleagues,

Could you please help me in solving the following problem:

Show that if $\displaystyle w$ is not an eigenvalue of an $\displaystyle n\times n $ constant matrix $\displaystyle A$, then $\displaystyle x(t)$ $\displaystyle =$ $\displaystyle k$ $\displaystyle e^{wt}$ is a solution of

$\displaystyle x^{\prime}(t)$ $\displaystyle =$ $\displaystyle A$ $\displaystyle x(t)$ - $\displaystyle b$ $\displaystyle e^{wt}$,

where $\displaystyle b$ and $\displaystyle k$ are $\displaystyle n\times 1$ constant vectors.

Best Regards,

Raed.