Results 1 to 14 of 14

Math Help - A tricky equation of the first order

  1. #1
    Newbie
    Joined
    Mar 2011
    From
    Karlskrona, Sweden
    Posts
    7

    A tricky equation of the first order

    My teacher gave me a "bonus" assignment the other day, and I've been racking my brain trying to solve it. Here it is:

    xy'(ln(\frac{x}{y}) +1) = y(ln(\frac{x}{y}) - 1)

    So far I've figured that I should substitute ln(\frac{x}{y}) for u(x), thus giving me y = \frac{x}{e^{u(x)}}, but from there I'm kind of lost. Any ideas?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,854
    Thanks
    321
    Awards
    1
    Quote Originally Posted by getsallad View Post
    My teacher gave me a "bonus" assignment the other day, and I've been racking my brain trying to solve it. Here it is:

    xy'(ln(\frac{x}{y}) +1) = y(ln(\frac{x}{y}) - 1)

    So far I've figured that I should substitute ln(\frac{x}{y}) for u(x), thus giving me y = \frac{x}{e^{u(x)}}, but from there I'm kind of lost. Any ideas?
    I haven't done anything with it, but note that if you divide both sides by x you have an equation in y/x...

    -Dan
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Mar 2011
    From
    Karlskrona, Sweden
    Posts
    7
    I'm sorry, my knowledge of differential equations in itself is quite shaky, but how would that help me? If I get what you're saying, is it that I get
    y'(ln(\frac{x}{y}) + 1) = \frac{x}{y}(ln(\frac{x}{y}) - 1)?
    If that's the case, are you suggesting I could substitute u(x) for \frac{x}{y} instead?
    Follow Math Help Forum on Facebook and Google+

  4. #4
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    The substitution u = x/y does render the equation separable (the original DE is homogeneous). The problem is, the resulting integral in u is horrendous. I suppose you could say, at that point, that you've "reduced the DE to quadratures", but if your professor is looking for a closed-form solution, that won't do.

    The substitution u=\ln(x/y) is much better. You have to translate the DE over to the u domain:

    u'=\dfrac{y}{x}\cdot\dfrac{y-xy'}{y^{2}}=\dfrac{y-xy'}{xy}.

    Solve this for y', and plug everything into the DE. A few things should cancel, leaving you with a much nicer separable equation.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Very cute problem, by the way! Thanks for posting!
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Newbie
    Joined
    Mar 2011
    From
    Karlskrona, Sweden
    Posts
    7
    Thanks for the help. I'm trying it out right now, doing all the steps myself to see if I get it.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,854
    Thanks
    321
    Awards
    1
    I just did the integral using Akbeet's method as well as using the homogeneous method and I'd rate them to be about the same level of difficulty.

    For the "connoisseurs" out there, the homogeneous solution includes a nice little integral:
    \displaystyle \int \frac{ln(u)~du}{u} which I haven't seen done in a long time. (it's not particularly hard to do, just a nice little piece of work.)

    -Dan
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Newbie
    Joined
    Mar 2011
    From
    Karlskrona, Sweden
    Posts
    7
    OK, so I've gotten somewhere. Now I'm stuck on the actual separable differential equation.

    I have

    \frac{2}{u + 1} = xu'

    which leads me to

    \frac{2}{u + 1} du = x dx

    but that approach seems to give me a completely different solution from what Wolfram Alpha gives me when I feed it the equation. So I figure I must be doing something wrong, since Wolfram Alpha's solution also seems more in tune with the final solution of the problem.
    Follow Math Help Forum on Facebook and Google+

  9. #9
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Your first equation is correct. Your second is incorrect.
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Newbie
    Joined
    Mar 2011
    From
    Karlskrona, Sweden
    Posts
    7
    OK, so I've hit one last roadblock and it's mighty frustrating. In the end I get

    \frac{u^2}{2} + u = 2ln(x) + c

    and Wolfram Alpha gives the solution

    \frac{1}{2}*ln^2(\frac{x}{y}) - ln(\frac{x}{y}) = 2ln(x) + c

    Which is basically the same thing with - instead of +. Should I show you step by step what I am doing? This is driving me nuts.
    Follow Math Help Forum on Facebook and Google+

  11. #11
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    No, WolframAlpha is not giving you that solution, it's giving you this solution. Notice that the x and y in the WolframAlpha solution are flipped from what you have. Because the left-most logarithm is squared, the change in sign goes unnoticed. That, of course, doesn't happen with the second term.

    I'm saying your solution is correct.
    Follow Math Help Forum on Facebook and Google+

  12. #12
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Incidentally, you could, if you wanted to, use the quadratic formula on log(x/y) and then solve for y. You get a multi-valued "function" then, but it is an explicit formula for y, which is nice.
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Newbie
    Joined
    Mar 2011
    From
    Karlskrona, Sweden
    Posts
    7
    Ah, can't believe I missed that. Thanks a million for the help on this one! I'll be sure to include the explicit formula for y just to be on the safe side. You've been most helpful! =)
    Follow Math Help Forum on Facebook and Google+

  14. #14
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    You're very welcome! Have a good one!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Tricky First Order D.E
    Posted in the Differential Equations Forum
    Replies: 4
    Last Post: May 19th 2011, 07:58 AM
  2. Second order homogenous DE - Tricky
    Posted in the Differential Equations Forum
    Replies: 2
    Last Post: November 29th 2010, 09:23 AM
  3. tricky little first order linear DE
    Posted in the Differential Equations Forum
    Replies: 4
    Last Post: November 27th 2010, 08:29 AM
  4. [SOLVED] Tricky First Order ODE
    Posted in the Differential Equations Forum
    Replies: 1
    Last Post: April 4th 2010, 07:11 PM
  5. Tricky First Order Differential Equation
    Posted in the Differential Equations Forum
    Replies: 2
    Last Post: January 14th 2010, 02:44 AM

Search Tags


/mathhelpforum @mathhelpforum