1. ## Undetermined Coefficients

Set up the correct linear combination of functions with undetermined literal coefficients to use in finding a particular integral by the method of UC. (Do not actually find the particular integrals.)

$y''-6y'+8y = x^3+x+e^{-2x}$

$m^2-6m+8=0$

$y_c=C_1e^{2x}+C_2e^{4x}$

$S_1=(x^3,x^2,x,1)$
$S_2=(x,1)$
$S_3=(e^{-2x})$

S_2 is completely contained in S_1 but none are included in the complimentary function?

Thanks.

2. Originally Posted by JJ007
Set up the correct linear combination of functions with undetermined literal coefficients to use in finding a particular integral by the method of UC. (Do not actually find the particular integrals.)

$y''+6y'+8y = x^3+x+e^{-2x}$

$m^2-6m+8=0$

$y_c=C_1e^{2x}+C_2e^{4x}$

$S_1=(x^3,x^2,x,1)$
$S_2=(x,1)$
$S_3=(e^{-2x})$

S_2 is completely contained in S_1 but none are included in the complimentary function?

Thanks.

$m^2+6m+8=(m+2)(m+4)$

3. Originally Posted by TheEmptySet
$m^2+6m+8=(m+2)(m+4)$
$y=Ax^3+Bx^2+Cx+D+Me^{-2x}$