From the following equations, set at a fixed positive value. Show that as , the equilibrium point inside the population quadrant approaches the point on the y-axis and that if

H2 = c, all points on the y-axis are equilibrium points of system (9).

I decided to let H1 = 1.

It would seem that as , the equation would reduce to .

I don't know how to solve for the equilibrium point, however.

The only mention in my book I find is the following excerpt:

"If the harvest coefficients in the above 2 equations are too large, the internal equilibrium point crosses the positive y-axis, and one (or both) species becomes extinct, as we see in the next example."

Where should I start in proving the equilibrium point?

Thanks!