1. ## Mixtures

A large tank is filled to capacity with 500 gallons of pure water. Brine (a mixture of salt and water) containing 2 pounds of salt per gallon is pumped into the tank at a rate of 5 gallons per minute. The well-mixed solution is pumped out at a rate of 10 gallons per minute. Find the number $A(t)$ of pounds of salt in the tank at time $t$.

OK. I know that the rate at which the amount of salt is changing inside the tank with respect to time - $\frac{dA}{dt}$ - is simply the net rate of the amount being pumped in and the amount being pumped out, that is

$\frac{dA}{dt}=R_{in}-R_{out}$.

Now, $R_{in}=(2\frac{lbs}{gal})\cdot(5\frac{gal}{min})=1 0\frac{lbs}{min}$

and I think that $R_{out}=\frac{A(t)lbs}{(500-5t)gal}\cdot10\frac{gal}{min}$

Assuming my $R_{out}$ is correct, this would imply the DE

$\frac{dA}{dt}+\frac{5}{100-t}A=10$ which is linear with the integrating factor

$e^{\int\frac{5}{100-t}dt}=e^{-5\ln|100-t|}=e^{\ln(100-t)^{-5}}=(100-t)^{-5}$.

So, I have

$\int\frac{d}{dt}\left[(100-t)^{-5}A\right]dt=\int10(100-t)^{-5}dt$

Am I on the right track?

2. Originally Posted by VonNemo19
A large tank is filled to capacity with 500 gallons of pure water. Brine (a mixture of salt and water) containing 2 pounds of salt per gallon is pumped into the tank at a rate of 5 gallons per minute. The well-mixed solution is pumped out at a rate of 10 gallons per minute. Find the number $A(t)$ of pounds of salt in the tank at time $t$.

OK. I know that the rate at which the amount of salt is changing inside the tank with respect to time - $\frac{dA}{dt}$ - is simply the net rate of the amount being pumped in and the amount being pumped out, that is

$\frac{dA}{dt}=R_{in}-R_{out}$.

Now, $R_{in}=(2\frac{lbs}{gal})\cdot(5\frac{gal}{min})=1 0\frac{lbs}{min}$

and I think that $R_{out}=\frac{A(t)lbs}{(500-5t)gal}\cdot10\frac{gal}{min}$

Assuming my $R_{out}$ is correct, this would imply the DE

$\frac{dA}{dt}+\frac{5}{100-t}A=10$ which is linear with the integrating factor

$e^{\int\frac{5}{100-t}dt}=e^{-5\ln|100-t|}=e^{\ln(100-t)^{-5}}=(100-t)^{-5}$.

So, I have

$\int\frac{d}{dt}\left[(100-t)^{-5}A\right]dt=\int10(100-t)^{-5}dt$

Am I on the right track?
You should have

$\displaystyle A'+\frac{2A}{100-t}=10$

3. Oh, duh. But everything else is OK?

4. Originally Posted by VonNemo19
Oh, duh. But everything else is OK?
Yeah once you change your P(t) numbers.

,

,

### a large tank is filled with 500 gallons of pure water

Click on a term to search for related topics.