I'm trying to solve the differential equation dy/dx + (2-3x^2)(x^-3)y = 1. I've integrated (2-3x^2)(x^-3) and taken the exponential of this to give an integrating factor of (x^-3)e^(x^2). However, when I differentiate the integrating factor multiplied by y, I don't end up with the left hand side of the equation. I must have gone wrong somewhere in my working, however, I've checked it several times!
We can rewrite the equation in the form:
and:
so, an integrating factor is:
Fernando Revilla
Edited: Sorry, I misread the OP's equation.