Results 1 to 4 of 4

Math Help - au_x+bu_y+cu=0

  1. #1
    MHF Contributor
    Joined
    Mar 2010
    From
    Florida
    Posts
    3,093
    Thanks
    5

    au_x+bu_y+cu=0

    au_x+bu_y+cu=0

    a,b,c\in\mathbb{C} \ \ \mbox{and} \ \ b\ne 0

    a,b,c aren't necessarily Complex numbers.

    u(x,0)=u_0(x)

    u_0(x) is differentiable.

    \omega_{\xi}(a\cos{\alpha}+b\sin{\alpha})+\omega_{  \eta}(b\cos{\alpha}-a\sin{\alpha})+c\omega=0

    \displaystyle\tan{\alpha}=\frac{b}{a}

    Right Triangle:

    Legs a and b

    Hypotenuse d=\sqrt{a^2+b^2}

    \displaystyle\cos{\alpha}=\frac{a}{d} \ \ \sin{\alpha}=\frac{b}{d}

    \displaystyle\frac{a^2+b^2}{d}\omega_{\xi}+c\omega  = 0

    \displaystyle\omega_{\xi}+\frac{c}{d}\omega=0

    x=A\xi+B\eta \ \ \ y=C\xi+D\eta

    au_x+bu_y=\omega_{\xi}=Au_x+Cu_y\Rightarrow \ \ A=a \ \ C=b

    Let D=0 \ \ B=1

    \displaystyle x=a\xi+\eta \ \ y=b\xi\Rightarrow \eta=x-\frac{ay}{b} \ \ \xi=\frac{y}{b}

    \omega_{\xi}+c\omega=0

    \exp{(c\xi)}\omega=g(\eta)\Rightarrow \omega(\xi,\eta)=\exp{(-c\xi)}g(\eta)

    \displaystyle\omega(\xi,\eta)=u(x,y)=\exp{\left(\f  rac{-cy}{b}\right)}g\left(x-\frac{ay}{b}\right)

    \displaystyle u(x,0)=g(x)=u_0(x)

    \displaystyle u(x,y)=\exp{\left(\frac{-cy}{b}\right)}u_0\left(x-\frac{ay}{b}\right)

    Is this correct?
    Last edited by dwsmith; January 10th 2011 at 02:04 PM. Reason: changed an x to a c
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Jester's Avatar
    Joined
    Dec 2008
    From
    Conway AR
    Posts
    2,356
    Thanks
    36
    An easy way of determining whether your answer is correct is

    (1) Does it satisfy the IC?

    (2) Does it satisfy the PDE when you substitute the solution in?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Joined
    Mar 2010
    From
    Florida
    Posts
    3,093
    Thanks
    5
    I wasn't sure how to differentiate \displaystyle u(x,y)=\exp{\left(\frac{-cy}{b}\right)}u_0\left(x-\frac{ay}{b}\right) due to the u_0 piece.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Jester's Avatar
    Joined
    Dec 2008
    From
    Conway AR
    Posts
    2,356
    Thanks
    36
    u_0 is an arbitrary function of its argument so

    \dfrac{\partial}{\partial x} u_0\left(x - \dfrac{a}{b} y\right) = u_0'\left(x - \dfrac{a}{b} y\right)

    \dfrac{\partial}{\partial y} u_0\left(x - \dfrac{a}{b} y\right) = u_0'\left(x - \dfrac{a}{b} y\right)\left(-\dfrac{a}{b}\right).
    Follow Math Help Forum on Facebook and Google+


/mathhelpforum @mathhelpforum