Let . Find potential function for . We know , so Differentiating wrt , . So we have + constant. The answers then simply state that the constant is just zero, not quite sure how they get to this? Thanks in advance
Last edited by craig; January 4th 2011 at 03:56 PM.
Follow Math Help Forum on Facebook and Google+
Originally Posted by craig Let . Find potential function for . We know , so Differentiating wrt , . So we have + constant. The answers then simply state that the constant is just zero, not quite sure how they get to this? Thanks in advance Dear craig, You have a arbitary constant. Therefore you can take any value you like for the constant. For simplicity they may have taken it to by equal to zero.
Ahh thankyou. I was debating whether you could basically choose your value of the constant. Cheers for the quick reply.
That g(x) should be g(y).
Originally Posted by craig Let . Find potential function for . We know , so Differentiating wrt , . So we have + constant. The answers then simply state that the constant is just zero, not quite sure how they get to this? Thanks in advance You set your Then you have I have a different solution for your g(y) solution then what you obtained. I don't think you should have a 2/3 just a 1/3.
Thanks for the last two posts. You're both right, typos due to typing far too quickly lol. Cheers for spotting those
View Tag Cloud