Laplace transform DE with non-constant coefficients

Hi,

I'm puzzled over solving a DE with Laplace transform, where the coefficient are non-constant and no initial values are given. The equation is xy''+y'+xy=0.

By transforming y(x), I end up with;

x(s^2 Y(s) - sy'(0) - y(0)) + (sY(s) - y'(0)) + xY(s) = 0

.. which can be rewritten as:

Y(s)=((xs+1) y(0) + xy'(0)) / (xs^2 + s + x)

Now, since I don't have any initial values, I will simply end up with an expression based on y_0(t) and y_1(t)? I haven't been able to find any suggestions/examples for these problems in my books or internet, this is just what I derived from the theories...