Find a function F(x) such that F'(x)= 1/x and F(1)=2 Leave an exact answer- do not approximate any numbers

This is how I got it: To fine F(x) I found the antiderivative for F'(x).

The antiderivative of 1/x is equal to ln(x), because the derivative of ln(x) is 1/x. I know that the derivative of log a (x) is equal to 1/(x ln(a)). So, in ln(x), the value of a is e. ln(e) is equal to 1, so finally, I know that the derivative of ln(x) is equal to 1/x, therefore the antiderivative of 1/x is equal to ln(x), because the derivative and the antiderivative are opposites of each other.

F(x)= ln(x)

Know that I know what F(x) is and that F(1)=2 what do I do next?

F(1)=ln(1)=0 (so what about the 2- Thanks for the help)