1. ## Initial conditions

Find the particular solution for the differential equation $\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-20x = 0$ that satisfies the initial conditions $x = 0$, $\dfrac{dx}{dt} = 2$ when $t = 0$.

Substituting $x = Ae^{n_{1}x}+Be^{n_{2}x}$, I got $n = 5$ and $n = -4$, so the general solution is $x = Ae^{5t}+Be^{-4t}.$

What I don't know is how to make use of the initial conditions to find $A$ and $B$.

2. Find (dx/dt)(t): $\frac{dx}{dt}(t) = 5Ae^{5t} - 4Be^{-4t}$
Now you can get two equations in two unknowns using the two initial conditions: (dx/dt)(0) = 2 and x(0) = 0.

3. Originally Posted by slider142
Find (dx/dt)(t): $\frac{dx}{dt}(t) = 5Ae^{5t} - 4Be^{-4t}$
Now you can get two equations in two unknowns using the two initial conditions: (dx/dt)(0) = 2 and x(0) = 0.
$5A-4B = 2$, $5A = 2+4B$, $A = \dfrac{2+4B}{5}.$

$A = -B$

$\dfrac{2+4B}{5} = -B$

$2+4B = -5B$

$B = -\dfrac{2}{9}$

$\therefore \;\;\; A = \dfrac{9}{2}

$
and $B = -\dfrac{9}{2}.$

Therefore the particular equation is $x = -\dfrac{2}{9}e^{5t}+\dfrac{2}{9}e^{-4t}.$