Results 1 to 3 of 3

Math Help - Solving Differential Equations with An Integrating Factor

  1. #1
    Junior Member
    Joined
    Sep 2008
    Posts
    33

    Solving Differential Equations with An Integrating Factor

    I have two differential equations that I need to solve. All the teacher told me is that I need to use a integrating factor to solve them (although I am not entirely sure he even knows what that is). So any help or links to any good resource on the subject would be great:

    1. \frac{dy}{dx}=2x(1+x^2-y)

    2. \frac{dy}{dx}=\frac{y}{x}+\frac{y^2}{x^2}
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Mar 2010
    From
    Florida
    Posts
    3,093
    Thanks
    5
    Quote Originally Posted by flybynight View Post
    I have two differential equations that I need to solve. All the teacher told me is that I need to use a integrating factor to solve them (although I am not entirely sure he even knows what that is). So any help or links to any good resource on the subject would be great:

    1. \frac{dy}{dx}=2x(1+x^2-y)

    2. \frac{dy}{dx}=\frac{y}{x}+\frac{y^2}{x^2}
    1. Rewrite:
    y'+2xy=2x+2x^3

    P(x)=2x, Q(x)=2x+2x^3, and e^{\int 2xdx}=e^{e^2}

    \int \frac{dy}{dx}[e^{x^2}y]=\int e^{x^2}q(x)dx
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Joined
    Oct 2008
    Posts
    1,035
    Thanks
    49
    2. \ \ \ \frac{dy}{dx}=\frac{y}{x}+\frac{y^2}{x^2}

    \Rightarrow\ \frac{dy}{dx} - \frac{y}{x}\ =\ \frac{y^2}{x^2}

    \Rightarrow\ \frac{1}{y^2}\ \frac{dy}{dx} - \frac{1}{xy}\ =\ \frac{1}{x^2}

    Now, we can write this along the bottom row of...



    ... except instead of just y (as in question 1) we have a function f(y), thus...



    ... where the network on the LHS is basically the legs-uncrossed version of...



    ... the product rule, straight lines differentiating downwards with respect to x. You use an integrating factor when you can fill out the whole of the bottom row so that the LHS is an exact product-rule derivative. To do this you generally (and in question 1 would proabably need to) take account of...



    ... the chain rule. Straight continuous lines differentiate downwards (integrate up) with respect to x, and the straight dashed line similarly but with respect to the dashed balloon expression (which is the inner function of the composite and hence subject to the chain rule). Then you can reason thusly:



    (Again, this is a template in which I haven't allowed for the complication that our y term might be a function of y... but, it's still going to work.)

    So in general the 'integrating factor' is e to the power of the integral of some special term in the equation that we recognise as suitable for the purpose. Then we multiply through by this exponential. In this case, though, that term being one over x, we get e to the log x, or just x.



    So, knowing that, we may as well zoom out of the chain rule...



    We can now integrate both sides with respect to x, because the LHS is an exact product-rule derivative and the RHS is straight-forward.

    However, we might want to zoom in on the chain rule to see why the complication besetting y isn't going to spoil things.



    Spoiler:


    i.e...



    The top line is your general solution, of course.



    Just in case a picture helps with q.1 ...

    \frac{dy}{dx}=2x(1+x^2-y)

    \Rightarrow\ \frac{dy}{dx} + 2xy\ =\ 2x+2x^3



    Spoiler:

    Spoiler:


    For 2x e^{x^2} we can 'spot the derivative' and use the chain rule, and for the other product we can do integration by parts, where the general drift is...



    Spoiler:


    However, this becomes...



    So the two chain-rule shapes cancel, and what we really had all along on the RHS was another EXACT product-rule derivative!



    (The general solution in the top row.)




    __________________________________________

    Don't integrate - balloontegrate!

    Balloon Calculus; standard integrals, derivatives and methods

    Balloon Calculus Drawing with LaTeX and Asymptote!
    Last edited by tom@ballooncalculus; May 14th 2010 at 05:40 PM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Differential Equations - Integrating Trouble
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: October 19th 2011, 06:49 PM
  2. Solving Equations in a factor Ring Z[x] / <x>
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: April 4th 2011, 01:20 PM
  3. Homogeneous equations always do have an integrating factor
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: October 3rd 2010, 08:11 AM
  4. [SOLVED] differential equation given integrating factor
    Posted in the Differential Equations Forum
    Replies: 4
    Last Post: March 27th 2010, 07:05 AM
  5. Differential equation - integrating factor
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: June 19th 2009, 07:18 AM

Search Tags


/mathhelpforum @mathhelpforum