# Thread: Nonlinear Autonomous System

1. ## Nonlinear Autonomous System

Can I get help on the solution of the following 2 systems:
1. dx/dt = -y(y-1) dy/dt = (x-1)(y-1)
2. dx/dt = 1/y dy/dt = 1/x
Thanka a lot for any help.

2. (1) Pl Note that,

$\displaystyle \frac{dy}{dx}=\frac{dy}{dt} \cdot \frac{dt}{dx}$

$\displaystyle \therefore \frac{dy}{dx}=\frac{(x-1)(y-1)}{-y(y-1)}$

$\displaystyle \therefore y \cdot dy= -(x-1) \cdot dx$

$\displaystyle \therefore y \cdot dy+(x-1) \cdot dx = 0$

Now integrate..

Same way,,,

(2)

$\displaystyle \frac{dy}{dx}=\frac{dy}{dt} \cdot \frac{dt}{dx}$

$\displaystyle \therefore \frac{dy}{dx}=\frac{y}{x)}$

$\displaystyle \therefore \frac{dy}{y}= \frac{dx}{x}$

Now integrate..

3. Thank you very much.
I am able to solve x(t) and y(t) for System #2.
However, for System #1 if I integrate, I get y^2 = -(x^2)/2+x, and I am not sure how to get y(t) and x(t).

4. Originally Posted by kjchauhan
(1) Pl Note that,

$\displaystyle \frac{dy}{dx}=\frac{dy}{dt} \cdot \frac{dt}{dx}$

$\displaystyle \therefore \frac{dy}{dx}=\frac{(x-1)(y-1)}{-y(y-1)}$

$\displaystyle \therefore y \cdot dy= -(x-1) \cdot dx$

$\displaystyle \therefore y \cdot dy+(x-1) \cdot dx = 0$

Now integrate..

Same way,,,

(2)

$\displaystyle \frac{dy}{dx}=\frac{dy}{dt} \cdot \frac{dt}{dx}$

$\displaystyle \therefore \frac{dy}{dx}=\frac{y}{x)}$

$\displaystyle \therefore \frac{dy}{y}= \frac{dx}{x}$

Now integrate..

$\displaystyle y \cdot dy+(x-1) \cdot dx = 0$

$\displaystyle \therefore \frac{y^2}{2} + \frac{(x-1)^2}{2} = C$(Constant)

5. Thank you very much.