Hi

I have found the complementary function but I am not sure how to work out the particluar integral. Here are the equations

$\displaystyle

\dot{x}=3x+8y-2t

$

$\displaystyle

\dot{y}=-5x+-10y+1

$

Which is

$\displaystyle

\left[\begin{array}{c} \dot{x}\\

\dot{y}\end{array}\right]=\left[\begin{array}{cc}

3 & 8\\

-5 & -10\end{array}\right]\cdot\left[\begin{array}{c}

x\\

y\end{array}\right]+\left[\begin{array}{c}

-2t\\

1\end{array}\right]

$

I have solved the complementary function

$\displaystyle

\left[\begin{array}{c}

x\\

y\end{array}\right]=\alpha\left[\begin{array}{c}

1\\

-5/8\end{array}\right]e^{-2t}+\beta\left[\begin{array}{c}

1\\

-1\end{array}\right]e^{-5t}

$

But I am not sure how to solve for the particular integral, any ideas

Thanks