Hi,

Is it possible to rewrite the equations

(a) $\displaystyle x'=\begin{cases}

\frac{x^{2}-1}{x-1} & x\neq1\\

2 & x=1\end{cases}

$

(b) $\displaystyle x'=\begin{cases}

\frac{x^{4}-1}{x^2-1} & x\neq1\\

2 & x=1\end{cases}

$

as linear equations?

Can someone give me a hint, please?

Thanks a lot in advance.

Honey$\displaystyle \pi$