Hi,

I have the DE $\displaystyle \frac{dy}{dt} +\frac{dy}{dt}t^2 = e^{-y}$

If you take the reciprocal of both sides, you end up with:

$\displaystyle \frac{dt}{dy}+\frac{dt}{dy}t^{-2} = e^y$

multiply by dy:$\displaystyle dt + t^-2dt = e^y dy$

But when im then integrating this, i get

$\displaystyle t -\frac{1}{3}t^{-3} = e^y$

What's wrong here?