For some reason, this is giving me fits. Im supposed to put it in the form: $\displaystyle M(x,y)dx+N(x,y)dy=0$ then use the substitution $\displaystyle v=\frac{y}{x}$, so $\displaystyle y=vx$ and $\displaystyle dy=vdx+xdv$

Here is the D.E.

$\displaystyle x\frac{dy}{dx}=y+\sqrt{x^2+y^2}$

Is it safe to make it like this: $\displaystyle (x-y)dy=\sqrt{x^2+y^2}dx$ then $\displaystyle \sqrt{x^2+y^2}dx-(x-y)dy=0$ then use the substitution?

Thanks