Let u be a harmonic function in $\displaystyle K(0,1) subset R^n, n>= 2$.
Prove that v is harmonic then on complement K(0,1), where v is given with the formula:
$\displaystyle v(x)= ||x||^{2n-1} u( \frac {x}{||x||^2 \}$
pls help!
Let u be a harmonic function in $\displaystyle K(0,1) subset R^n, n>= 2$.
Prove that v is harmonic then on complement K(0,1), where v is given with the formula:
$\displaystyle v(x)= ||x||^{2n-1} u( \frac {x}{||x||^2 \}$
pls help!