Letube a harmonic function in $\displaystyle K(0,1) subset R^n, n>= 2$.

Prove thatvis harmonic then on complement K(0,1), wherevis given with the formula:

$\displaystyle v(x)= ||x||^{2n-1} u( \frac {x}{||x||^2 \;)}$

pls help! :)

Printable View

- Jan 12th 2010, 03:14 AMtom007PDE-harmonic functions
Let

*u*be a harmonic function in $\displaystyle K(0,1) subset R^n, n>= 2$.

Prove that*v*is harmonic then on complement K(0,1), where*v*is given with the formula:

$\displaystyle v(x)= ||x||^{2n-1} u( \frac {x}{||x||^2 \;)}$

pls help! :)