# Linear Diff. Equ. of Second Order

• Dec 9th 2009, 07:18 AM
kjchauhan
Linear Diff. Equ. of Second Order

(1) $\frac{d^2y}{dx^2}+\frac{2}{x}\frac{dy}{dx}-n^2y=0$

(2) $\frac{d^2y}{dx^2}+\frac{2}{x}\frac{dy}{dx}+n^2y=0$

(3) $(x-3)\frac{d^2y}{dx^2}-(4x-9)\frac{dy}{dx}+3(x-2)y=0$

(4) $(1-x^2)\frac{d^2y}{dx^2}+3x\frac{dy}{dx}+y=0$

(5) $\frac{d^2y}{dx^2}+4x\frac{dy}{dx}+4x^2y=0$

(6) $x\frac{d^2y}{dx^2}-(2x-1)\frac{dy}{dx}+(x-1)y=0$

(7) $\frac{d^2y}{dx^2}+x\frac{dy}{dx}-y=f(x)$

(8) $(x\sin x+\cos x)\frac{d^2y}{dx^2}-x\cos x\frac{dy}{dx}+ y\cos x$

• Dec 9th 2009, 07:50 AM
craig
Please limit your post to 1 question, if you have multiple problems post them in separate threads.

Also show us your working so far and we will help you through where you get stuck.

Thank you
• Dec 9th 2009, 08:00 AM
kjchauhan
Method of transforming the independent variables, I took $z=\int e^{-\int Pdx} \; dx$
But I didn't gt it properly.. and $Q_1 \ne constant$

I also supposed $Q_1=constant$, but in this case I also didint get it.