Find the particular solution of the differential equation

$\displaystyle \frac{y}{x}\frac{dy}{dx}=\frac{y^2+1}{x^2+1}$ y=0 when x=1

I solved the differential equation by first separating the variables:

$\displaystyle \int \frac{y}{y^2+1}dy=\int \frac{x}{x^2+1}dx$

$\displaystyle \frac{1}{2}\ln |y^2+1|=\frac{1}{2}\ln |x^2+1|+A$ where A=the arbitrary constant.

Now i don't know how to proceed.

Thanks