Results 1 to 2 of 2

- Sep 2nd 2009, 02:06 PM #1

- Joined
- Jan 2009
- Posts
- 145

## PDE help

1. Consider the heat equation in a two-dimensional region with an insulated boundary. An isotherm is a line of constant temperature, i.e., a level curve of the function u(x,t). Show that the isotherms are always perpendicular to the boundary.

I know that the level curve is going to be perpendicular to the gradient of the function, but I don't know where to go with that.

2. Consider the heat equation with internal heat source on a rod of length L:

u_t = u_xx + x - B

u(x,0) = f(x)

u_x(0,t) = u_x(L, t) = 0

For what values of the constant B does an equilibrium temperature distribution exist, and for each such B, what is the equilibrium distribution?

For 2, I got that the equilibrium temperature exists when B = .5L, but I don't know how to find the equilibrium distribution.

Thanks in advance!

- Sep 3rd 2009, 04:08 AM #2