Evaluate

$\displaystyle \int_{}^{t}dt\frac{t^3+a^3}{t^3-a^3}$

So far i have

$\displaystyle \int_{}^{t}dt\frac{t^3+a^3}{t^3-a^3} = \int_{}^{t}dt\frac{t^3-a^3+a^3+a^3}{t^3-a^3} = \int_{}^{t}dt\frac{t^3-a^3}{t^3-a^3}+\frac{2a^3}{t^3-a^3} = \int_{}^{t}dt1+\frac{2a^3}{t^3-a^3}$

I'm not sure where i am to go next. Any hints as to what i can do?