Results 1 to 3 of 3

Thread: Trig Substitution

  1. #1
    Junior Member
    Joined
    Oct 2006
    Posts
    36

    Trig Substitution

    I don't know how to do this problem, so if someone could please help me, I'll be grateful:

    Solve the initial value problem

    (x2 + 1) squared dy/dx = the square root of(x2 + 1) , y(0) = 1

    Thanks
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by turtle View Post
    I don't know how to do this problem, so if someone could please help me, I'll be grateful:

    Solve the initial value problem

    (x2 + 1) squared dy/dx = the square root of(x2 + 1) , y(0) = 1

    Thanks
    $\displaystyle (x^2+1)y'=\sqrt{x^2+1}$

    $\displaystyle y'=\frac{\sqrt{x^2+1}}{x^2+1}=\frac{1}{\sqrt{1+x^2 }}$

    $\displaystyle y=\int \frac{1}{\sqrt{1+x^2}}dx=\sinh^{-1}(x)+C$
    $\displaystyle y(0)=1$
    $\displaystyle 1=\sinh^{-1}(0)+C$
    $\displaystyle 1=0+C$
    $\displaystyle C=1$

    $\displaystyle y=\sinh^{-1}(x)+1$
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, turtle!

    Your title was "Trig Substitution" . . .


    Solve the initial value problem:

    $\displaystyle (x^2 + 1)^2\,\frac{dy}{dx} \:= \:\sqrt{x^2 + 1}\qquad y(0) = 1$

    We have: .$\displaystyle \frac{dy}{dx} \:=\:\frac{\sqrt{x^2+1}}{(x^2+1)^2}\quad\Rightarro w\quad dy \:=\:\frac{dx}{(x^2+1)^{\frac{3}{2}}}$

    Integrate: .$\displaystyle \int dy \;=\;\int\frac{dx}{(x^2+1)^{\frac{3}{2}}} $

    Let $\displaystyle x = \tan\theta\quad\Rightarrow\quad dx = \sec^2\theta\,d\theta$
    . . $\displaystyle (x^2 + 1)^{\frac{3}{2}} \:=\:\left(\tan^2\theta + 1\right)^{\frac{3}{2}} \:=\:\left(\sec^2\theta\right)^{\frac{3}{2}} \:=\:\sec^3\theta$

    Substitute: .$\displaystyle y(x) \;=\;\int\frac{\sec^2\theta\,d\theta}{\sec^3\theta } \;= \;\int\frac{d\theta}{\sec\theta} \;=\;\int\cos\theta\,d\theta \;=\;\sin\theta + C$

    Back-substitute: .$\displaystyle \tan\theta = x\quad\Rightarrow\quad\sin\theta = \frac{x}{\sqrt{x^2+1}} $

    . . $\displaystyle y(x) \;= \;\frac{x}{\sqrt{x^2+1}} + C$

    Since $\displaystyle y(0) = 1\!:\;\;\frac{0}{\sqrt{0^2 + 1}} + C \:=\:1\quad\Rightarrow\quad C = 1$

    Therefore: .$\displaystyle y(x) \;=\;\frac{x}{\sqrt{x^2+1}} + 1$

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Trig Substitution
    Posted in the Calculus Forum
    Replies: 4
    Last Post: Oct 14th 2010, 07:09 AM
  2. Trig Substitution
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Mar 7th 2010, 01:19 AM
  3. Trig substitution
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Mar 5th 2009, 08:12 PM
  4. Trig Substitution
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Sep 24th 2008, 09:21 PM
  5. Trig substitution
    Posted in the Calculus Forum
    Replies: 27
    Last Post: Jun 16th 2008, 06:55 PM

Search Tags


/mathhelpforum @mathhelpforum