how to know on what variable the constant dependant
$\displaystyle \frac{\mathrm{d} U}{\mathrm{d} x}=\frac{yz}{1+x^2y^2z^2}\\$
$\displaystyle t=xyz\\$
$\displaystyle dt=yzdx\\$
$\displaystyle \int \frac{dt}{1+t^2}=arctg(t)+c(?,?,?)
$
how to know on what variable the constant dependant
$\displaystyle \frac{\mathrm{d} U}{\mathrm{d} x}=\frac{yz}{1+x^2y^2z^2}\\$
$\displaystyle t=xyz\\$
$\displaystyle dt=yzdx\\$
$\displaystyle \int \frac{dt}{1+t^2}=arctg(t)+c(?,?,?)
$