$\displaystyle

x=\sqrt{2}\cos t\\

$

$\displaystyle

y=\sqrt{2}\sin t \\

$

$\displaystyle

z=\frac{4t}{\pi}\\

$

$\displaystyle

A=\int^{(1,1,1)}_{(0,0,0)}\frac{yz}{1+x^2y^2z^2}dx +\frac{xz}{1+x^2y^2z^2}dy+\frac{xy}{1+x^2y^2z^2}dz \\

$

$\displaystyle

A=\int^{(1)}_{(0)}\frac{\sqrt{2}\sin tz}{1+(\sqrt{2}\cos t)^2(\sqrt{2}\sin t)^2z^2}(dx)+\frac{xz}{1+x^2(\sqrt{2}\sin t)^2z^2}0+

$

$\displaystyle

+\frac{xy}{1+x^2(\sqrt{2}\sin t)^2z^2}0

$

i dont know if i am doing it the right way

becausei got a very complexed expression and this only one third