is there an explicit solution for this integral or do i have to use quadrature
$\displaystyle f(x,\gamma) = \int \frac{1-e^{-2\gamma(1-x)}}{1-e^{-2\gamma}\cdot x(1-x)} dx$
where $\displaystyle \gamma$ is a constant
thanks
is there an explicit solution for this integral or do i have to use quadrature
$\displaystyle f(x,\gamma) = \int \frac{1-e^{-2\gamma(1-x)}}{1-e^{-2\gamma}\cdot x(1-x)} dx$
where $\displaystyle \gamma$ is a constant
thanks