How does one find the length of a curve parametrized by $\displaystyle x = \sqrt{5}sin(2t)-2$ and $\displaystyle y=\sqrt{5}cos(2t)-\sqrt{3}$ from t = 0 to t = pi/4? TIA
Follow Math Help Forum on Facebook and Google+
$\displaystyle L=\int ds$ $\displaystyle L=\int \sqrt{dx^2+dy^2} $ $\displaystyle L=\int_0^{\frac{\pi}{4}} \sqrt{\left( \frac {dx}{dt} \right)^2+\left( \frac {dy}{dt} \right)^2} dt$
View Tag Cloud