What is the integral of this?
$\displaystyle dy/dx = /int(5.6 - (e ^(1.2x) + e ^(-1.2x))/2 $
I tried it and got the following, I think I am wrong...
$\displaystyle y = 5.6x - 0.6(e^ (1.2x) - e ^(-1.2x)) + c$
Any help would be appreciated
Thanks!
What is the integral of this?
$\displaystyle dy/dx = /int(5.6 - (e ^(1.2x) + e ^(-1.2x))/2 $
I tried it and got the following, I think I am wrong...
$\displaystyle y = 5.6x - 0.6(e^ (1.2x) - e ^(-1.2x)) + c$
Any help would be appreciated
Thanks!
Do you mean this?
$\displaystyle \frac{{dy}}{{dx}} = \frac{1}{2}\left( {5.6 - \left( {{e^{1.2x}} + {e^{ - 1.2x}}} \right)} \right) \Leftrightarrow$
$\displaystyle \Leftrightarrow dy = \frac{1}
{2}\left( {5.6 - \left( {{e^{1.2x}} + {e^{ - 1.2x}}} \right)} \right)dx \Leftrightarrow$
$\displaystyle \Leftrightarrow \int {dy} = \frac{1}
{2}\int {\left( {5.6 - {e^{1.2x}} - {e^{ - 1.2x}}} \right)dx} \Leftrightarrow$
$\displaystyle \Leftrightarrow \int {dy} = \frac{1}{2}\int {\left( {\frac{{28}}{5} - {e^{\left( {{6 \mathord{\left/{\vphantom {6 5}} \right.\kern-\nulldelimiterspace} 5}} \right)x}} - {e^{ - \left( {{6 \mathord{\left/
{\vphantom {6 5}} \right.\kern-\nulldelimiterspace} 5}} \right)x}}} \right)dx} \Leftrightarrow$
$\displaystyle \Leftrightarrow y = \frac{1}{2}\left( {\frac{{28}}{5}x - \frac{5}
{6}{e^{\left( {{6 \mathord{\left/{\vphantom {6 5}} \right.
\kern-\nulldelimiterspace} 5}} \right)x}} + \frac{5}{6}{e^{ - \left( {{6 \mathord{\left/{\vphantom {6 5}} \right.\kern-\nulldelimiterspace} 5}} \right)x}}} \right) + C.$