# Thread: What is the integral of this function? I think my answer is wrong

1. ## What is the integral of this function? I think my answer is wrong

What is the integral of this?
$\displaystyle dy/dx = /int(5.6 - (e ^(1.2x) + e ^(-1.2x))/2$

I tried it and got the following, I think I am wrong...
$\displaystyle y = 5.6x - 0.6(e^ (1.2x) - e ^(-1.2x)) + c$

Any help would be appreciated

Thanks!

2. Originally Posted by auonline
What is the integral of this?
$\displaystyle dy/dx = /int(5.6 - (e ^(1.2x) + e ^(-1.2x))/2$

I tried it and got the following, I think I am wrong...
$\displaystyle y = 5.6x - 0.6(e^ (1.2x) - e ^(-1.2x)) + c$

Any help would be appreciated

Thanks!
Do you mean this?

$\displaystyle \frac{{dy}}{{dx}} = \frac{1}{2}\left( {5.6 - \left( {{e^{1.2x}} + {e^{ - 1.2x}}} \right)} \right) \Leftrightarrow$

$\displaystyle \Leftrightarrow dy = \frac{1} {2}\left( {5.6 - \left( {{e^{1.2x}} + {e^{ - 1.2x}}} \right)} \right)dx \Leftrightarrow$

$\displaystyle \Leftrightarrow \int {dy} = \frac{1} {2}\int {\left( {5.6 - {e^{1.2x}} - {e^{ - 1.2x}}} \right)dx} \Leftrightarrow$

$\displaystyle \Leftrightarrow \int {dy} = \frac{1}{2}\int {\left( {\frac{{28}}{5} - {e^{\left( {{6 \mathord{\left/{\vphantom {6 5}} \right.\kern-\nulldelimiterspace} 5}} \right)x}} - {e^{ - \left( {{6 \mathord{\left/ {\vphantom {6 5}} \right.\kern-\nulldelimiterspace} 5}} \right)x}}} \right)dx} \Leftrightarrow$

$\displaystyle \Leftrightarrow y = \frac{1}{2}\left( {\frac{{28}}{5}x - \frac{5} {6}{e^{\left( {{6 \mathord{\left/{\vphantom {6 5}} \right. \kern-\nulldelimiterspace} 5}} \right)x}} + \frac{5}{6}{e^{ - \left( {{6 \mathord{\left/{\vphantom {6 5}} \right.\kern-\nulldelimiterspace} 5}} \right)x}}} \right) + C.$

3. A little correction : 5.6 = 28/5 ^^

4. sorry I can't use latex that well it is 5.6 - (e^1.2x + e^-1.2x)/2 \

EDIT: Nevermind I got it