Page 1 of 2 12 LastLast
Results 1 to 15 of 16

Thread: limits?

  1. #1
    Newbie
    Joined
    Oct 2006
    Posts
    17

    limits?

    Help with some questions?
    Attached Thumbnails Attached Thumbnails limits?-untitled-1.jpg  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Problem #2

    Expand $\displaystyle (2x-3)^{20}$ as a binomial,
    $\displaystyle (2^{20}x^{20}+....)$

    Expand $\displaystyle (3x+2)^{30}$ as a binomial,
    $\displaystyle (3^{30}x^{30}+....)$

    Expand $\displaystyle (2x+1)^{50}$ as a binomial,
    $\displaystyle (2^{50}x^{50}+....)$

    Thus, we have,
    $\displaystyle \lim_{x\to \infty} \frac{(2^{20}x^{20}+...)(3^{30}x^{30}+...)}{2^{50} x^{50}+...}$
    Take the Cauchy product,
    $\displaystyle \lim_{x\to\infty} \frac{2^{20}\cdot 3^{30}x^{50}+...}{2^{50}x^{50}+...}$
    Only the first coefficients are of interest,
    $\displaystyle \frac{2^{20}\cdot 3^{30}}{2^{50}}$
    Thus,
    $\displaystyle (3/2)^{50}$
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,002
    Thanks
    1
    For #3, we can use the ol' Hospital rule.


    $\displaystyle \lim_{x\rightarrow{0}}\frac{(8+3x-x^{2})^{\frac{1}{3}}-2}{x+x^{2}}$

    L'Hopital, derivative of num. and den.:

    $\displaystyle \frac{d}{dx}[(8+3x-x^{2})^{\frac{1}{3}}-2]=\frac{3-2x}{3(8+3x-x^{2})^{\frac{2}{3}}}$

    $\displaystyle \frac{d}{dx}[x+x^{2}]=2x+1$

    $\displaystyle \frac{\frac{3-2x}{3(8+3x-x^{2})^{\frac{2}{3}}}}{2x+1}=\frac{3-2x}{3(2x+1)(8+3x-x^{2})^{\frac{2}{3}}}$

    $\displaystyle \frac{1}{3}\lim_{x\rightarrow{0}}\frac{3-2x}{(8+3x-x^{2})^{\frac{2}{3}}(1+2x)}$

    =$\displaystyle \frac{1}{3}\cdot\frac{3}{8^{\frac{2}{3}}}=\frac{1} {4}$


    For #6:

    There are some identities we can employ:

    Believe it or not: $\displaystyle \frac{sin(5x)-sin(3x)}{sin(x)}=2cos(4x)$

    Now, we have a nice, little, itty-bitty, easy limit.

    $\displaystyle \lim_{x\rightarrow{0}}2cos(4x)=2$
    Last edited by galactus; Jan 4th 2007 at 04:31 PM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    11,152
    Thanks
    731
    Awards
    1
    For number 1 we can try L'Hopital's rule since the numerator and denominator both go to 0:
    $\displaystyle \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}} - \frac{-1}{2\sqrt{1-x}}}{\frac{1}{3\sqrt[3]{(1+x)^2}} - \frac{-1}{3\sqrt[3]{(1-x)^2}}}$$\displaystyle = \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{3} + \frac{1}{3}} = \frac{1}{\frac{2}{3}}$$\displaystyle = \frac{3}{2}$

    -Dan
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    11,152
    Thanks
    731
    Awards
    1
    For 5 there are other ways to do this (like L'Hopital's rule), but you can use one of my favorite methods. Since we are looking at x close to 0, use a Taylor's expansion of the numerator and denominator around x = 0:
    $\displaystyle tgx - sin(x) \approx (tg - 1)x - \frac{1}{6}x^3 + \frac{1}{120}x^5$

    $\displaystyle sin^3(x) \approx x^3 - \frac{1}{2}x^5$

    So:
    $\displaystyle \lim_{x \to 0} \frac{tgx - sin(x)}{sin^3(x)} = \lim_{x \to 0} \frac{(tg - 1)x - \frac{1}{6}x^3 + \frac{1}{120}x^5}{x^3 - \frac{1}{2}x^5}$

    $\displaystyle = \lim_{x \to 0} \frac{x[(tg - 1) - \frac{1}{6}x^2 + \frac{1}{120}x^4]}{x[x^2 - \frac{1}{2}x^4]}$

    $\displaystyle = \lim_{x \to 0} \frac{(tg - 1) - \frac{1}{6}x^2 + \frac{1}{120}x^4}{x^2 - \frac{1}{2}x^4}$

    Now, the denominator goes to 0 while the numerator goes to $\displaystyle tg - 1$. Presuming that $\displaystyle tg - 1 \neq 0$ the limit is infinite (ie doesn't exist.)

    If $\displaystyle tg - 1 = 0$ then

    $\displaystyle \lim_{x \to 0} \frac{tgx - sin(x)}{sin^3(x)} = \lim_{x \to 0} \frac{- \frac{1}{6}x^2 + \frac{1}{120}x^4}{x^2 - \frac{1}{2}x^4}$

    $\displaystyle = \lim_{x \to 0} \frac{x^2[-\frac{1}{6} + \frac{1}{120}x^2]}{x^2[1 - \frac{1}{2}x^2]}$

    $\displaystyle = \lim_{x \to 0} \frac{-\frac{1}{6} + \frac{1}{120}x^2}{1 - \frac{1}{2}x^2}$

    $\displaystyle = \frac{-\frac{1}{6}}{1} = - \frac{1}{6}$

    -Dan
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    11,152
    Thanks
    731
    Awards
    1
    #4. I don't have time for full rigor here, but since $\displaystyle \sqrt{x + \sqrt{x + \sqrt{x}}} > \sqrt{x}$ for all x > 1 I would say this limit is infinite. To get a proof, note that the limit is of the form $\displaystyle \infty - \infty$. You can convert this to either $\displaystyle \frac{0}{0}$ or $\displaystyle \frac{\infty}{\infty}$ and then use L'Hopital's rule.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, sbsite!

    Here's #2 . . . without the Binomial Expansion.


    $\displaystyle 2)\;\lim_{x\to\infty}\frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}}$

    Divide top and bottom by $\displaystyle (2x)^{50}$

    . . $\displaystyle \frac{\frac{1}{(2x)^{50}}}{\frac{1}{(2x)^{50}}}\cd ot\frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}}\;=\;\frac{ \frac{(2x-3)^{20}}{(2x)^{20}}\,\frac{(3x+2)^{30}}{(2x)^{30}} } {\frac{(2x+1)^{50}}{(2x)^{50}}}$

    . . $\displaystyle =\;\frac{\left(\frac{2x-3}{2x}\right)^{20}\left(\frac{3x+2}{2x}\right)^{30 } } {\left(\frac{2x+1}{2x}\right)^{50}} \;=\;\frac{\left(1 - \frac{3}{2x}\right)^{20}\left(\frac{3}{2} + \frac{1}{x}\right)^{30} } {\left(1 + \frac{1}{2x}\right)^{50}} $


    Then: .$\displaystyle \lim_{x\to\infty}\frac{\left(1 - \frac{3}{2x}\right)^{20}\left(\frac{3}{2} + \frac{1}{x}\right)^{30} } {\left(1 + \frac{1}{2x}\right)^{50}}\;=\;\frac{(1 - 0)^{20}\left(\frac{3}{2} + 0\right)^{30}}{(1 + 0)^{50}}$ $\displaystyle =\;\frac{1^{20}\left(\frac{3}{2}\right)^{30}}{1^{5 0}} \:=\:\boxed{\left(\frac{3}{2}\right)^{30}}$

    Follow Math Help Forum on Facebook and Google+

  8. #8
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello again, sbsite!

    A couple more . . . without using L'Hopital.


    $\displaystyle 5)\;\lim_{x\to0}\frac{\tan x - \sin x}{\sin^3\!x}$

    We have: .$\displaystyle \frac{\tan x - \sin x}{\sin^3\!x} \;=\;\frac{\frac{\sin x}{\cos x} - \sin x}{\sin^3\!x} \;=\;\frac{\frac{1}{\cos x} - 1}{\sin^2\!x}$ $\displaystyle =\;\frac{1 - \cos x}{\sin^2\!x\cos x}$


    Multiply top and bottom by $\displaystyle 1 + \cos x\!:\;\;\frac{1 - \cos x}{\sin^2\!x\cos x}\cdot\frac{1 + \cos x}{1 + \cos x}$

    . . $\displaystyle =\;\frac{1 - \cos^2x}{\sin^2\!x\cos x(1 + \cos x)} \;= \;\frac{\sin^2\!x}{\sin^2\!x\cos x(1 + \cos x)} \;=\;\frac{1}{\cos x(1 + \cos x)}$


    Therefore: .$\displaystyle \lim_{x\to0}\,\frac{1}{\cos x(1 + \cos x)} \;=\;\frac{1}{1(1+1)} \;=\;\boxed{\frac{1}{2}}$



    $\displaystyle 6)\;\lim_{x\to0}\frac{\sin 5x - \sin 3x}{\sin x}$

    Divide top and bottom by $\displaystyle x\!:\;\;\frac{\frac{\sin 5x}{x} - \frac{\sin3x}{x}}{\frac{\sin x}{x}} $


    Multiply the first fraction by $\displaystyle \frac{5}{5}$, the second fraction by $\displaystyle \frac{3}{3}$

    . . $\displaystyle \frac{\frac{5}{5}\!\cdot\!\frac{\sin 5x}{x} - \frac{3}{3}\!\cdot\!\frac{\sin 3x}{x}}{\frac{\sin x}{x}} \;=\;\frac{5\left(\frac{\sin 5x}{5x}\right) - 3\left(\frac{\sin3x}{3x}\right)}{\frac{\sin x}{x}} $


    Then: .$\displaystyle \lim_{x\to0}\,\frac{5\left(\frac{\sin5x}{5x}\right ) - 3\left(\frac{\sin3x}{3x}\right)}{\frac{\sin x}{x}} \;=\;\frac{5\!\cdot\!1 - 3\!\cdot\!1}{1} \;= \;\boxed{2}$

    Follow Math Help Forum on Facebook and Google+

  9. #9
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    11,152
    Thanks
    731
    Awards
    1
    Quote Originally Posted by topsquark View Post
    #4. I don't have time for full rigor here, but since $\displaystyle \sqrt{x + \sqrt{x + \sqrt{x}}} > \sqrt{x}$ for all x > 1 I would say this limit is infinite. To get a proof, note that the limit is of the form $\displaystyle \infty - \infty$. You can convert this to either $\displaystyle \frac{0}{0}$ or $\displaystyle \frac{\infty}{\infty}$ and then use L'Hopital's rule.

    -Dan
    #4 Addendum. I was thinking to factor a $\displaystyle \sqrt{x}$ from the first term and factor, and use the fact that the limit now takes the form of $\displaystyle \infty \cdot 0$. You can convert this to the form $\displaystyle \frac{\infty}{\infty}$ and use L'Hopital's rule on it, but we now get an indeterminate form $\displaystyle \frac{0}{0}$, and it doesn't look another application of L'Hopital's rule is going to help.

    Perhaps this will work and I'm simply not being persistant enough, but I'm assuming another method (which I can't think of at the moment) will produce easier results.

    (Note: Numerical estimates suggest that the limit is $\displaystyle \frac{1}{2}$.)

    -Dan
    Follow Math Help Forum on Facebook and Google+

  10. #10
    TD!
    TD! is offline
    Senior Member
    Joined
    Jan 2006
    From
    Brussels, Belgium
    Posts
    405
    Thanks
    3
    For #7:

    Substitute x = y + 1, then you have to take the limit for y to 0.

    Note that tan(pi/2+a) = -cot(a), so we can simplify like this:

    $\displaystyle
    \mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \left( {\frac{{\pi x}}{2}} \right) = \mathop {\lim }\limits_{y \to 0} \left( { - y} \right)\tan \left( {\frac{{\pi \left( {1 + y} \right)}}{2}} \right) = \mathop {\lim }\limits_{y \to 0} y\cot \left( {\frac{{\pi y}}{2}} \right)
    $

    Now, arround 0, Taylor says that $\displaystyle \tan x \approx x$; so:

    $\displaystyle
    \mathop {\lim }\limits_{y \to 0} y\cot \left( {\frac{{\pi y}}{2}} \right) = \mathop {\lim }\limits_{y \to 0} \frac{y}{{\tan \left( {\frac{{\pi y}}{2}} \right)}} = \mathop {\lim }\limits_{y \to 0} \frac{y}{{\frac{{\pi y}}{2}}} = \boxed{\frac{2}{\pi }}
    $
    Follow Math Help Forum on Facebook and Google+

  11. #11
    TD!
    TD! is offline
    Senior Member
    Joined
    Jan 2006
    From
    Brussels, Belgium
    Posts
    405
    Thanks
    3
    For #4:

    To avoid l'Hopital with all these roots, multiply numerator and denominator with the complement:

    $\displaystyle
    \sqrt {x + \sqrt {x + \sqrt x } } - \sqrt x = \frac{{\left( {\sqrt {x + \sqrt {x + \sqrt x } } - \sqrt x } \right)\left( {\sqrt {x + \sqrt {x + \sqrt x } } + \sqrt x } \right)}}{{\left( {\sqrt {x + \sqrt {x + \sqrt x } } + \sqrt x } \right)}}
    $

    Simplify in the numerator ((a-b)(a+b) = a-b) and divide numerator and denominator by sqrt(x):

    $\displaystyle
    \frac{{\sqrt {\sqrt {x\left( {x + 1} \right)} } }}{{\sqrt {x + \sqrt {x + \sqrt x } } + \sqrt x }} = \frac{{\frac{{\sqrt {\sqrt {x\left( {x + 1} \right)} } }}{{\sqrt x }}}}{{\frac{{\sqrt {x + \sqrt {x + \sqrt x } } + \sqrt x }}{{\sqrt x }}}} = \frac{{\sqrt {\frac{{\sqrt {x\left( {x + 1} \right)} }}{x}} }}{{\sqrt {\frac{{x + \sqrt {x + \sqrt x } }}{x}} + 1}}
    $

    Keep shifting the x in the square roots (sqrt(a)/x = sqrt(a/x) with x positive):

    $\displaystyle
    \frac{{\sqrt {\sqrt {\frac{{x^2 + x}}{{x^2 }}} } }}{{\sqrt {1 + \sqrt {\frac{{x + \sqrt x }}{{x^2 }}} } + 1}} = \frac{{\sqrt {\sqrt {1 + \frac{1}{x}} } }}{{\sqrt {1 + \sqrt {\frac{1}{x} + \frac{1}{{x^{\frac{3}{2}} }}} } + 1}}
    $

    Now, all the fractions 1/x and the one 1/x^(3/2) go to zero for x to infinity, so:

    $\displaystyle
    \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {\sqrt {1 + \frac{1}{x}} } }}{{\sqrt {1 + \sqrt {\frac{1}{x} + \frac{1}{{x^{\frac{3}{2}} }}} } + 1}} = \frac{{\sqrt {\sqrt {1 + 0} } }}{{\sqrt {1 + \sqrt {0 + 0} } + 1}} = \frac{1}{{1 + 1}} = \frac{1}{2}
    $
    Follow Math Help Forum on Facebook and Google+

  12. #12
    TD!
    TD! is offline
    Senior Member
    Joined
    Jan 2006
    From
    Brussels, Belgium
    Posts
    405
    Thanks
    3
    Addendum for #7.

    If you can't (or rather not) use Taylor, the last steps can be replaced by using the standard limit of tan(x)/x for x to 0.
    That limit is of course, just as the one for sin(x)/x with x to 0, 1. In that case, write:

    $\displaystyle
    \mathop {\lim }\limits_{y \to 0} \frac{y}{{\tan \left( {\frac{\pi }{2}y} \right)}} = \mathop {\lim }\limits_{y \to 0} \frac{2}{\pi }\frac{{\frac{\pi }{2}y}}{{\tan \left( {\frac{\pi }{2}y} \right)}} = \frac{2}{\pi }\mathop {\lim }\limits_{y \to 0} \left( {\frac{{\tan \left( {\frac{\pi }{2}y} \right)}}{{\frac{\pi }{2}y}}} \right)^{ - 1} = \frac{2}{\pi }
    $
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,002
    Thanks
    1
    Here's a method I used for the nested radical. It's not as eloquent as TD's, but what the heck:

    $\displaystyle \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}$

    Let $\displaystyle u=\sqrt{x+\sqrt{x}}$

    With some algbraic gymnastics, we get:

    $\displaystyle x=\frac{(\sqrt{4u^{2}+1}-1)^{2}}{4}$

    and $\displaystyle \frac{\sqrt{4u^{2}+1}-1}{2}$

    And we have:

    $\displaystyle \underbrace{\lim_{x\rightarrow{\infty}}\sqrt{\frac {1}{2}+u+u^{2}-\frac{\sqrt{4u^{2}+1}}{2}}}$$\displaystyle -\underbrace{\lim_{x\rightarrow{\infty}}\frac{\sqrt {4u^{2}+1}}{2}}$$\displaystyle +\lim_{x\rightarrow{\infty}}\boxed{\frac{1}{2}}$

    ............................................$\displaystyle \underbrace{\nwarrow\nearrow}_{\text{tend to 0}}$
    Follow Math Help Forum on Facebook and Google+

  14. #14
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, sbsite!

    I think I have #4 . . .


    $\displaystyle 4)\;\lim_{x\to+\infty}\left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}\right)$

    Let $\displaystyle \sqrt{x} = u\quad\Rightarrow\quad x = u^2$

    We have: .$\displaystyle \lim_{u\to\infty}\left(\sqrt{u^2 + \sqrt{u^2 + u}} - u\right)$


    Multiply top and bottom by $\displaystyle \left(\sqrt{u^2 + \sqrt{u^2+u}} + u\right)$

    . . $\displaystyle \frac{\sqrt{u^2 + \sqrt{u^2 + u}} - u}{1}\cdot\frac{\sqrt{u^2 + \sqrt{u^2 + u}} + u} {\sqrt{u^2 + \sqrt{u^2+u}} + u}$ $\displaystyle \:=\:\frac{u^2 + \sqrt{u^2 + u} - u^2}{\sqrt{u^2 + \sqrt{u^2 + u}} + u}$ $\displaystyle \:=\:\frac{\sqrt{u^2 + u}}{\sqrt{u^2 + \sqrt{u^2+u}} + u} $


    Divide top and bottom by $\displaystyle u$

    . . $\displaystyle \frac{\frac{\sqrt{u^2+u}}{u}} {\frac{\sqrt{u^2 + \sqrt{u^2+u}}}{u} + \frac{u}{u}}$ .$\displaystyle =\:\frac{\frac{\sqrt{u^2+u}}{\sqrt{u^2}}} {\frac{\sqrt{u^2 + \sqrt{u^2+u}}} {\sqrt{u^2}} + 1}$ .$\displaystyle = \:\frac{\sqrt{\frac{u^2+u}{u^2}}} {\sqrt{\frac{u^2 + \sqrt{u^2 + u}}{u^2}} + 1} $ .$\displaystyle = \:\frac{\sqrt{\frac{u^2}{u^2} + \frac{u}{u^2}}} {\sqrt{\frac{u^2}{u^2} + \frac{\sqrt{u^2 + u}}{u^2}} + 1}$

    We have: .$\displaystyle \lim_{u\to\infty} \frac{\sqrt{1 + \frac{1}{u}}} {\sqrt{1 + \frac{\sqrt{u^2+u}}{u^2}} + 1}\;=\;\frac{\sqrt{1 + 0}}{\sqrt{1 + 0} + 1} \;=\;\boxed{\frac{1}{2}}$

    Follow Math Help Forum on Facebook and Google+

  15. #15
    TD!
    TD! is offline
    Senior Member
    Joined
    Jan 2006
    From
    Brussels, Belgium
    Posts
    405
    Thanks
    3
    Soroban, we did exactly the same, only you named sqrt(x) = u. The steps are the same
    Follow Math Help Forum on Facebook and Google+

Page 1 of 2 12 LastLast

Similar Math Help Forum Discussions

  1. Using limits to find other limits
    Posted in the Calculus Forum
    Replies: 7
    Last Post: Sep 18th 2009, 05:34 PM
  2. Function limits and sequence limits
    Posted in the Differential Geometry Forum
    Replies: 0
    Last Post: Apr 26th 2009, 01:45 PM
  3. HELP on LIMITS
    Posted in the Calculus Forum
    Replies: 4
    Last Post: Sep 23rd 2008, 11:17 PM
  4. Limits
    Posted in the Calculus Forum
    Replies: 5
    Last Post: Sep 21st 2008, 10:52 PM
  5. [SOLVED] [SOLVED] Limits. LIMITS!
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Feb 25th 2008, 10:41 PM

Search Tags


/mathhelpforum @mathhelpforum