Hello everybody. I need some help on this prob.

The function defined by $\displaystyle f(x)=\sin \pi x$ has zeros at every integer. Show that when $\displaystyle -1<a<0$ and $\displaystyle 2<b<3$, the Bisection method converges to

a. $\displaystyle 0$, if $\displaystyle a+b<2,$

b. $\displaystyle 2$, if $\displaystyle a+b>2,$

c. $\displaystyle 1$, if $\displaystyle a+b=2$