# Compute the Integral?

• Jun 6th 2009, 01:23 PM
masterofcheese
Compute the Integral?
Compute integral x on top, -1 on bottom, sin(t^2) times 2t dt

I have a calc final in three hours and I don't know how to solve this problem. :(
• Jun 6th 2009, 01:31 PM
Spec
$\int_{-1}^x 2t\sin t^2 dt$

Note that $\frac{d}{dt}\left(-\cos t^2 \right)=2t\sin t^2$
• Jun 6th 2009, 01:35 PM
skeeter
Quote:

Originally Posted by masterofcheese
Compute integral x on top, -1 on bottom, sin(t^2) times 2t dt

I have a calc final in three hours and I don't know how to solve this problem. :(

$\int_{-1}^x \sin(t^2) \cdot 2t \, dt$

substitution ... let $u = t^2$

$du = 2t \, dt$

substitute and reset the limits of integration ...

$\int_1^{x^2} \sin(u) \, du = \left[-\cos(u)\right]_{1}^{x^2}$

$\cos(1) - \cos(x^2)$
• Jun 6th 2009, 02:22 PM
calc101
Skeeter, I understand your solution except for the new limits: 1 and $x^2$.

Why did you introduce new limits to the integral and how did you get them?

Thanks
• Jun 6th 2009, 02:33 PM
Spec
He made the substitution $u=t^2$, and since $-1 \leq t \leq x$ we get $1 \leq u \leq x^2$

His final answer is correct, but he made a typo in the process by the way. $\int \sin x dx = \textcolor{red}{-}\cos x +C$
• Jun 6th 2009, 02:35 PM
Plato
I have one negative comment. I find it absolutely astounding that someone three hours away from a calculus final exam would not see at once that
$\int {2t\sin \left( {t^2 } \right)dt = - \cos \left( {t^2 } \right)}$.