Hello MHF,
needing some help in computing the following...
Compute the equation of the tangent plane to the graph of the function
$\displaystyle f(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$
at $\displaystyle x=3.00, y=3.00.$
Hello MHF,
needing some help in computing the following...
Compute the equation of the tangent plane to the graph of the function
$\displaystyle f(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$
at $\displaystyle x=3.00, y=3.00.$
$\displaystyle f(x,y) = \tan^{-1}\left(\frac{y}{x}\right)
$
$\displaystyle f_{x}=\frac{-y/x^2}{1+(y/x)^2}$
$\displaystyle f_{y}=\frac{1/x}{1+(y/x)^2}$
linear Approximation
$\displaystyle f(x,y)=f(a,b)+f_{x}(a,b)(x-a)+f_{y}(a,b)(y-b)$
All you have to do now is to substitute (3,3) instead of a,b