Let $\displaystyle f(x) = x^2 - 2x$, $\displaystyle x\in \mathbb{R}$ and $\displaystyle g(x) = f(f(x) - 1) + f(5 - f(x))$. Show that $\displaystyle g(x)\geq 0\ \forall\ x\in \mathbb{R}$.
Printable View
Let $\displaystyle f(x) = x^2 - 2x$, $\displaystyle x\in \mathbb{R}$ and $\displaystyle g(x) = f(f(x) - 1) + f(5 - f(x))$. Show that $\displaystyle g(x)\geq 0\ \forall\ x\in \mathbb{R}$.