Find the condition that the line $\displaystyle x\cos \alpha + y\sin \alpha = p$ may touch the curve
$\displaystyle \left(\frac{x - a}{a}\right)^{\frac{n}{n - 1}} + \left(\frac{y - b}{b}\right)^{\frac{n}{n - 1}} = 1$
Find the condition that the line $\displaystyle x\cos \alpha + y\sin \alpha = p$ may touch the curve
$\displaystyle \left(\frac{x - a}{a}\right)^{\frac{n}{n - 1}} + \left(\frac{y - b}{b}\right)^{\frac{n}{n - 1}} = 1$