# Thread: Application of derivatives?

1. ## Application of derivatives?

Given that $\displaystyle \sum_{k = 0}^{n - 1} a_{k} = 0$ where $\displaystyle a_{k} \in \mathbb{R}\ \forall\ k = 0, 1, 2,\mbox{....},(n - 1)$.

Show that $\displaystyle a_{i_{0}}\cdot n\cdot x^{n - 1} + a_{i_{1}}\cdot (n - 1)\cdot x^{n - 2} + ... + a_{i_{n - 2}}\cdot 2x + a_{i_{n - 1}} = 0$ has at least one real root in $\displaystyle (-3, 3)$ for any permutation $\displaystyle (a_{i_{0}}, a_{i_{1}},\mbox{.....},a_{i_{n - 1}}\ \mbox{of}\ a_0,a_1,\mbox{.....},a_{n - 1})$.

2. Originally Posted by fardeen_gen
Given that $\displaystyle \sum_{k = 0}^{n - 1} a_{k} = 0$ where $\displaystyle a_{k} \in \mathbb{R}\ \forall\ k = 0, 1, 2,\mbox{....},(n - 1)$.

Show that $\displaystyle a_{i_{0}}\cdot n\cdot x^{n - 1} + a_{i_{1}}\cdot (n - 1)\cdot x^{n - 2} + ... + a_{i_{n - 2}}\cdot 2x + a_{i_{n - 1}} = 0$ has at least one real root in $\displaystyle (-3, 3)$ for any permutation $\displaystyle (a_{i_{0}}, a_{i_{1}},\mbox{.....},a_{i_{n - 1}}\ \mbox{of}\ a_0,a_1,\mbox{.....},a_{n - 1})$.
trivial! let $\displaystyle f(x)=a_{i_0}x^n + a_{i_1}x^{n-1} + \cdots + a_{i_{n-1}}x.$ then $\displaystyle f(0)=f(1)=0$ and thus by Rolle's theorem $\displaystyle f'(x)=0$ has a root in the interval $\displaystyle (0,1).$